Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
The study of decentralized learning or independent learning in cooperative multi-agent reinforcement learning has a history of decades. Recently empirical studies show that independent PPO (IPPO) can obtain good performance, close to or even better than the methods of centralized training with decentralized execution, in several benchmarks. However, decentralized actor-critic with convergence guarantee is still open. In this paper, we propose \textit{decentralized policy optimization} (DPO), a decentralized actor-critic algorithm with monotonic improvement and convergence guarantee. We derive a novel decentralized surrogate for policy optimization such that the monotonic improvement of joint policy can be guaranteed by each agent \textit{independently} optimizing the surrogate. In practice, this decentralized surrogate can be realized by two adaptive coefficients for policy optimization at each agent. Empirically, we compare DPO with IPPO in a variety of cooperative multi-agent tasks, covering discrete and continuous action spaces, and fully and partially observable environments. The results show DPO outperforms IPPO in most tasks, which can be the evidence for our theoretical results.
translated by 谷歌翻译
在离线增强学习中,加权回归是一种常见方法,可以确保学习的政策与行为策略保持接近并防止选择样本外动作。在这项工作中,我们表明,由于政策模型的分配表达有限,以前的方法可能仍会在培训期间选择看不见的动作,这会偏离其最初动机。为了解决这个问题,我们通过将学习的政策分解为两个部分:表达生成行为模型和动作评估模型,采用生成方法。关键见解是,这种去耦避免学习具有封闭形式表达式的明确参数化的策略模型。直接学习行为策略使我们能够利用生成建模的现有进步,例如基于扩散的方法,以建模各种行为。至于行动评估,我们将方法与样本中的计划技术相结合,以进一步避免选择样本外动作并提高计算效率。 D4RL数据集的实验结果表明,与最先进的离线RL方法相比,我们提出的方法具有竞争性或卓越的性能,尤其是在诸如Antmaze之类的复杂任务中。我们还经验证明,我们的方法可以从包含多个独特但类似成功策略的异质数据集中成功学习,而以前的单峰政策失败了。
translated by 谷歌翻译
沟通可以帮助代理商获得有关他人的信息,以便可以学习更好的协调行为。一些现有的工作会与其他人传达预测的未来轨迹,希望能为其他人做些更好的协调能力提供线索。但是,当对代理人同步处理时,有时会发生循环依赖性,因此很难协调决策。在本文中,我们提出了一种新颖的交流方案,顺序通信(SEQCOMM)。 Seqcomm不同步(高级代理在低级阶段之前做出决定),并有两个通信阶段。在谈判阶段,代理通过传达观测的隐藏状态并比较意图的价值来确定决策的优先级,这是通过对环境动态进行建模来获得的。在发射阶段,高级代理商领导着做出决策并与低级代理商进行交流。从理论上讲,我们证明Seqcomm学到的政策可以单调地改善并融合。从经验上讲,我们表明SEQCOMM在各种多机构合作任务中都优于现有方法。
translated by 谷歌翻译
分散的学习对合作多代理增强学习(MARL)表现出了巨大的希望。但是,非平稳性仍然是分散学习的重大挑战。在论文中,我们以最简单和基本的方式解决了非平稳性问题,并提出\ textit {多代理替代Q学习}(MA2QL),在那里,代理商轮流通过Q学习来更新其Q-函数。MA2QL是完全分散合作MARL的一种\ Textit {Minimalist}方法,但理论上是基础的。我们证明,当每个代理商在每个回合都保证$ \ varepsilon $ -Convergence时,他们的联合政策会收敛到NASH平衡。实际上,MA2QL仅需要对独立Q学习(IQL)的最小变化。我们经验评估MA2QL对各种合作的多代理任务。结果表明,MA2QL始终胜过IQL,尽管这种变化很小,但它验证了MA2QL的有效性。
translated by 谷歌翻译
尽管人工智能(AI)在理解各个领域的分子方面取得了重大进展,但现有模型通常从单个分子模态中获得单个认知能力。由于分子知识的层次结构是深刻的,即使人类也从不同的方式中学习,包括直觉图和专业文本,以帮助他们的理解。受到这一点的启发,我们提出了一个分子多模式基础模型,该模型是从分子图及其语义相关的文本数据(从发表的科学引用索引论文中爬立)的。该AI模型代表了直接桥接分子图和自然语言的关键尝试。重要的是,通过捕获两种方式的特定和互补信息,我们提出的模型可以更好地掌握分子专业知识。实验结果表明,我们的模型不仅在诸如跨模式检索和分子标题之类的跨模式任务中表现出有希望的性能,而且还可以增强分子属性预测,并具有从自然语言描述中产生有意义的分子图的能力。我们认为,我们的模型将对跨生物学,化学,材料,环境和医学等学科的AI能力领域产生广泛的影响。
translated by 谷歌翻译
本文介绍了端到端以任务为导向的对话(TOD)的本体学预验证的语言模型(OPAL)。与Chit-Chat对话模型不同,面向任务的对话模型至少满足两个特定于任务的模块:对话状态跟踪器(DST)和响应生成器(RG)。对话状态由域插槽值三元组成,它们被认为是用户搜索与域相关数据库的约束。带有带注释的对话状态的大规模面向任务的对话数据通常是无法访问的。它可以防止针对任务对话的审慎语言模型的开发。我们提出了一种简单而有效的预处理方法来减轻此问题,该方法由两个预审进阶段组成。第一阶段是在大规模上下文文本数据上预处理,其中文本的结构化信息是由信息提取工具提取的。为了弥合训练方法和下游任务之间的差距,我们设计了两个预训练的任务:类似于本体的三重恢复和下一文本生成,分别模拟了DST和RG。第二阶段是在TOD数据上微调验证的模型。实验结果表明,即使没有CAMREST676和MULTIWOZ基准的任何TOD数据,我们提出的方法即使没有任何TOD数据,我们提出的方法也可以提高竞争性能。
translated by 谷歌翻译
风能供应的可变性可能会给将风力发电纳入网格系统带来重大挑战。因此,风力预测(WPF)已被广泛认为是风能整合和操作中最关键的问题之一。在过去的几十年中,关于风能预测问题的研究爆炸了。然而,如何很好地处理WPF问题仍然具有挑战性,因为始终要求高预测准确性以确保电网稳定性和供应的安全性。我们提出了独特的空间动态风能预测数据集:SDWPF,其中包括风力涡轮机的空间分布以及动态上下文因素。鉴于,大多数现有数据集只有少量的风力涡轮机,而无需以细粒度的时间尺度了解风力涡轮机的位置和上下文信息。相比之下,SDWPF提供了半年多的风力涡轮机的风能数据,其相对位置和内部地位。我们使用此数据集启动BAIDU KDD杯2022来检查当前WPF解决方案的极限。该数据集在https://aistudio.baidu.com/aistudio/competition/detail/152/0/datasets上发布。
translated by 谷歌翻译
各种预培训模型的涌入通过提供丰富的教师资源来增强知识蒸馏〜(KD)。同时,探索大型模型存储库以选择合适的教师并进一步提取其知识成为艰巨的挑战。当训练学生提供大量预先训练的教师,即“教师”时,标准KD未能克服两个障碍。首先,我们需要有效地寻找教师中最有贡献的老师,而不是为学生列举所有教师。其次,由于教师可能会在W.R.T.的不同任务上进行培训。学生,我们必须从更通用的标签空间中提取知识。本文研究了``教师蒸馏'',学生进行教师评估和广义知识再利用。我们利用最佳运输来为两个问题构建一个统一的目标,该目标弥合了语义差距并测量一对模型之间的相关性。这个目标可以选择最相关的老师,我们将相同的目标最小化,而不是学生参数,以便随后从选定的教师转移知识。在各种环境中的实验证明了我们提出的方法的简洁性和多功能性。
translated by 谷歌翻译
随着预训练的语言模型的发展,对话理解(DU)已经看到了杰出的成功。但是,当前的DU方法通常为每个不同的DU任务采用独立模型,而无需考虑跨不同任务的共同知识。在本文中,我们提出了一个名为{\ em unidu}的统一的生成对话理解框架,以实现跨不同DU任务的有效信息交流。在这里,我们将所有DU任务重新制定为基于统一的立即生成模型范式。更重要的是,引入了一种新颖的模型多任务训练策略(MATS),以动态调整各种任务的权重,以根据每个任务的性质和可用数据在培训期间进行最佳知识共享。涵盖五个基本DU任务的十个DU数据集的实验表明,在所有任务上,提出的UNIDU框架在很大程度上优于特定于特定于任务精心设计的方法。 MATS还揭示了这些任务的知识共享结构。最后,Unidu在看不见的对话领域中获得了有希望的表现,显示了概括的巨大潜力。
translated by 谷歌翻译